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a b s t r a c t 

Alzheimer’s disease (AD), the most common form of dementia, not only causes progressive impairment 

of memory and other cognitive functions of patients, but also becomes the substantial financial burden to 

the health care system. There is thus an urgent need to (1) accurately predict the cognitive performance 

of the disease, and (2) identify potential MRI-related biomarkers most predictive of the estimation of 

cognitive outcomes. In this paper, we develop a novel multi-task learning formulation to explore the cor- 

relation existing in Magnetic Resonance Imaging (MRI) and cognitive measures by a mixed norm incor- 

porating a hierarchical group sparsity and shared subspace uncovering regularization, to learn a shared 

structure from multiple related tasks with considering implicit shared subspace structure and explicit 

subset of features as well as Region-of-Interests (ROIs) simultaneously. An efficient alternating optimiza- 

tion algorithm is derived to solve the proposed non-convex and non-smooth objective formulation. We 

comprehensively evaluate the proposed algorithm for the cognitive outcome prediction including all sub- 

jects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The experimental results not 

only demonstrate the proposed method has superior performance over multiple state-of-the-art com- 

parable approaches, but also identifies cognition-relevant MRI biomarkers that are consistent with prior 

knowledge. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Dementia poses a serious challenge to the aging society.

lzheimer’s disease (AD), the most common form of dementia, is a

radually progressive syndrome that mainly affects memory func-

ion, ultimately culminating in a dementia state where all cogni-

ive functions are affected [1] . The worldwide prevalence of AD is

redicted to quadruple from 46.8 million in 2016 to 131.5 million

y 2050 according to ADI’s World Alzheimer Report [2] . The huge

rice of caring for AD patients has made it one of the most costly

iseases in the developed countries. The total estimated worldwide

ost of ADntia is US $818 billion today, and it will increase to a

rillion dollar by 2018 [3] . 

Diagnosed in an early stage, therapeutic interventions can be

ade to slow down the progression of AD. Previous AD diagnosis

ainly relies on clinical observation and cognitive evaluation. Re-

ent studies [4,5] show the image analysis of brain scans from neu-
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oimaging is more reliable and accurate in detecting the presence

f AD than traditional clinical evaluation. Thus more and more at-

ention have been now shifting to finding effective biomarkers by

mage analysis of brain scans and applying machine learning meth-

ds to perform automatic early detection. To date, several biomark-

rs have been studied and proven to be sensitive to brain atrophy

aptured by MRI [6,11,12,25] , PET [15,16] , fMRI [13,14] . Recently,

ack Jr. et al. [17] reported that structural abnormalities can be ob-

erved in the human brain prior to any clinical symptom, indicat-

ng that structural abnormalities can be utilized for early detection

f AD. Hence, magnetic resonance imaging (MRI) has been widely

sed in the diagnosis or cognitive performance prediction of AD

18,33] . 

Many classification approaches have been designed to the di-

gnosis of AD and its prodromal stage: mild cognitive impair-

ent (MCI) based on the MRI scans [6,8,10,25,34,54] . However a

efinitive diagnosis of AD can only be made with histopatholog-

cal confirmation of amyloid plaques and neurofibrillary tangles,

sually at autopsy. Many clinical/cognitive measures have been de-

igned to evaluate the cognitive status of the patients and used

http://dx.doi.org/10.1016/j.patcog.2017.07.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.07.018&domain=pdf
mailto:caopeng@cse.neu.edu.cn
http://dx.doi.org/10.1016/j.patcog.2017.07.018


220 P. Cao et al. / Pattern Recognition 72 (2017) 219–235 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

r  

p  

g  

t  

m  

v  

m  

h  

b  

r  

f  

i  

l  

a

 

t  

s  

S  

T  

i  

e  

c  

w  

t  

b  

w  

o  

a  

t  

f  

i  

m  

t  

M  

d  

t  

a  

i

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as important criteria for clinical diagnosis of probable AD. Com-

pared with the discrete patient labels, cognitive performance eval-

uation provides additional valuable information for studying the

underlying disease mechanisms. The most commonly used cogni-

tive measures are Alzheimer’s Disease Assessment Scale cognitive

total score (ADAS), Mini Mental State Exam score (MMSE), Rey Au-

ditory Verbal Learning Test (RAVLT). ADAS is the gold standard in

AD drug trial for cognitive function assessment, extensively used

to measure the severity of important symptoms of AD, including

memory disturbances, language, praxis, attention, and other cog-

nitive abilities. MMSE is used extensively in clinical and research

settings to measure cognitive impairment, and examines orienta-

tion to time and place, attention and calculation, immediate and

delayed recall of words, language and visuo-constructional func-

tions. RAVLT is a test of episodic memory and sensitive to defi-

ciencies of memory found in many groups of patients, and widely

used for the diagnosis of memory disturbances. In the literature,

regression models have been widely studied to reveal the rela-

tionship between neuroimaging markers and cognitive measures

[47,53] , and investigate the prediction performance of neuroimag-

ing measures for inferring cognitive outcomes [47,53] or tracking

disease progression [7,26,35] . 

It is known that there exist inherent correlations among multi-

ple clinical cognitive variables of a subject. However, many works

do not model dependence relation among multiple tasks and ne-

glect the correlation between clinical tasks which is potentially

useful. When the tasks are believed to be related, learning multi-

ple related tasks jointly can improve performance relative to learn-

ing each task separately. Multi-Task Learning (MTL) is a statistical

learning framework which seeks at learning several models in a

joint manner. It has been commonly used to obtain better general-

ization performance than learning each task individually [19,31,46] .

The critical issues in MTL is to identify how the tasks are re-

lated and build learning models to capture such task relatedness.

Recently, the multi-task learning based feature learning methods

(MTFL) with sparsity-inducing norm have been widely studied to

select the discriminative feature subset from MRI features by in-

corporating inherent correlations among multiple clinical cognitive

measures [26,20,21] . For example, the � 2, 1 -norm regularization pe-

nalizes each row of parameters matrix as a whole and enforces

sparsity among the rows, it is able to select the most discrim-

inative features. Wang et al. [20] and Zhang et al. [21] employed

multi-task feature learning strategies for selecting biomarkers that

could predict multiple clinical scores. Specially, Wang [20] further

considers some important features are only correlated to a subset

of tasks, and adds an � 1 -norm regularizer to impose the sparsity

among all elements and propose to use the combined � 2, 1 -norm

and � 1 -norm regularizations to select features; Zhang proposed a

multi-task learning with � 2, 1 -norm to select the common subset

of relevant features for multiple variables from each modality by

assuming that the related tasks share a common relevant feature

subset. The most limitation of the popular learning models assume

linear relationship between the MRI features and the cognitive out-

comes. To model these more complicated but more flexible rela-

tionship between them, Zhang develop a multi-modal support vec-

tor regression (SVR) to fuse the above-selected features from all

modalities with the selected feature subset [21] . Kernel methods

[9] have been studied to model the cognitive scores as nonlinear

functions of neuroimaging measures. Recently, many kernel based

classification or regression methods with faster optimization speed

or stronger generalization performance have been proposed and

investigated by theoretically analyzing and experimentally evalu-

ating [22,23] . 

Despite of the above achievements, few regression models take

into account the covariance structure among predictors. To achieve

a certain function, brain imaging measures are often correlated
ith each other. For MRI data, the groups correspond to specific

egions-of-interest (ROIs) in the brain, e.g., entorhinal and hip-

ocampus. Individual features are specific properties of those re-

ions, e.g., cortical volume and thickness. For each region (group),

he multiple features are extracted to measure the atrophy infor-

ation of each ROI involving cortical thickness, surface area and

olume from gray matters and white matters in this study. The

ultiple shape measures from the same region provide a compre-

ensively quantitative evaluation of cortical atrophy, and tend to

e selected together as joint predictors. However, the � 2, 1 -norm

egularization only consider the shared representation from the

eatures in the original space, neglecting the potentially grouping

nformation among multiple neuroimaging measures and interre-

ated correlation in the latent shared low-dimensional subspace

mong multiple cognitive outcomes. 

In order to adequately exploit the intrinsic relatedness among

he tasks and make our model interpretable, we propose a sparse

hared structure based multi-task learning formulation, named

 parse G roup L asso with shared S ubspace based MTL(SGLS-MTL).

he regularizer in SGLS-MTL consists of three components includ-

ng an � 2, 1 -norm penalty on the regression weight vectors, which

nsures that a small subset of features will be selected for the

ognitive outcomes prediction models, a group � 2, 1 -norm penalty,

hich takes into account the interrelated correlation among mul-

iple neuroimaging measures and identifies the cognition-relevant

rain region, and a subspace structure uncovering regularization,

hich aims to search for a suitable low dimensional subspace

f the given input feature space to uncover the shared structure

cross tasks [31,43] . Therefore, the proposed MTL model captures

he task relationships from sparse representation with respect to

eature and region (ROI) on the original feature space, and underly-

ng subspace structure on the latent low-dimensional subspace si-

ultaneously, which can be seen as two different underlying struc-

ure. Fig. 1 shows the schematic flowchart of the proposed SGLS-

TL framework. The proposed formulation is challenging to solve

ue to the use of non-convex and non-smooth penalties. To solve

he objective function efficiently, we propose an efficient iterative

lgorithm utilizing accelerated proximal gradient (APG) [28] due to

ts fast convergence property. 

The main contributions of this paper can be summarized as fol-

ows: 

(1) We propose a mixed sparse shared structure based multi-

task learning combining a two-level sparsity and subspace

structure uncovering. We show that SGLS-MTL provides bet-

ter predictive performance and more interpretable than the

state-of-the-art in the cognitive performance prediction of

AD. 

(2) We design an efficient accelerated projected gradient opti-

mization algorithm to solve the non-convex and non-smooth

objective function. 

(3) We extend the regularization of sparse group lasso to clus-

tering involving the subspace based multi-task clustering

and multi-subspace clustering, and empirically demonstrates

the effectiveness of the embedded sparse learning frame-

work in unsupervised scenarios. 

(4) We extend the concept of “group” structure from ROI to

modality, to evaluate the performance of our method on fus-

ing multiple modalities. 

(5) The proposed method was evaluated on a large database us-

ing the entire 788 baseline MRI scans in the ADNI study

[40,41] . We carried out extensive experiments to test the

performance of SGLS-MTL along various dimensions includ-

ing predicting the baseline cognitive outcomes and future

cognitive outcomes, identifying biomarkers and the predic-
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Fig. 1. Flow chart of the proposed SGLS-MTL method. The goal of our work is to predict subjects’ cognitive scores in a number of neuropsychological assessments at baseline 

time using their MRI measures across the entire brain, respectively. From each ROI, multiple features are extracted to measure the atrophy information involving cortical 

thickness, surface area and volume from gray matters and white matters in this study. Sparse learning and subspace learning are incorporated into our multi-task learning 

framework to model the task relatedness and group structure of features. Our framework allows us not only to identify the MRI biomarkers from both the level of features 

and ROIs, but also to deal with fusion of multi-modalities data. Furthermore, the SGLS-MTL framework can be extended to classification model or clustering model to predict 

the stage of the disease or partition the instances without the label information. 
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Table 1 

Summary of ADNI dataset and subject information. 

Category CN MCI AD 

Number 225 390 173 

Gender (M/F) 119/109 257/142 99/90 

Age (y, ag ± sd) 75.8 ± 5.0 74.7 ± 7.4 75.2 ± 7.5 

Edu (y, ag ± sd) 16.1 ± 2.8 15.6 ± 3.0 14.7 ± 3.2 

CN, Cognitively Normal; MCI, Mild Cognitive Impairment; AD, 

Alzheimer’s Disease; M, male; F, female; Edu, Education; y, years; 

ag, average; sd, standard deviation. 

Table 2 

The amounts of patients of follow-up visits. 

Time point M06 M12 M24 M36 M48 

Instance size 718 662 532 345 91 
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tion of the heterogeneous tasks with incorporating the task

of classification. 

The rest of the paper is organized as follows. A description of

he data used, the formulation and optimization procedure of the

roposed SGLS-MTL are given in Section 2 . Section 3 discusses ex-

erimental results using ADNI dataset. We conclude in Section 4 . 

. Materials and methods 

.1. Data 

MR images and data used in this work were obtained from

he Alzheimers Disease Neuroimaging Initiative (ADNI) database

 adni.loni.ucla.edu ) [40] . The ADNI was launched in 2003 by the

ational Institute on Aging (NIA), the National Institute of Biomed-

cal Imaging and Bioengineering (NIBIB), the Food and Drug Ad-

inistration (FDA), private pharmaceutical companies and non-

rofit organizations, as a 60 million, 5-year public-private partner-

hip. The primary goal of ADNI has been to test whether serial

RI, PET, other biological markers, and clinical and neuropsycho-

ogical assessment can be combined to measure the progression

f MCI and early AD. The current work focuses on MRI data. In

DNI, all participants received 1.5 Tesla (T) structural MRI. The MRI

eatures used in our experiments are based on the imaging data

rom the ADNI database processed by a team from UCSF (Univer-

ity of California at San Francisco), who performed cortical recon-

truction and volumetric segmentations with the FreeSurfer image

nalysis suite ( http://surfer.nmr.mgh.harvard.edu/ ) according to the

tlas generated in [42] . The FreeSurfer software was employed to

utomatically label cortical and subcortical tissue classes for the

tructural MRI scan of each subject, and to extract thickness mea-

ures of cortical regions of interests (ROIs) and volume measures

f cortical and subcortical. For each cortical region, the cortical

hickness average (TA), standard deviation of thickness (TS), sur-

ace area (SA) and cortical volume (CV) were calculated as fea-

ures. For each subcortical, subcortical volume was calculated as

eatures. Left and right hemisphere SA and total intracranial vol-

me (ICV) were also included. This yielded a total of p = 319 MRI

eatures (including 275 cortical and 44 subcortical features, see
able S1). Details of the analysis procedure are available at http:

/adni.loni.ucla.edu/research/mri- post- processing/ . 

In this work, only ADNI subjects with no missing feature and

ognitive outcome information baseline data are included. This

ields a total of n = 788 subjects, who are categorized into 3 base-

ine diagnostic groups: Cognitively Normal (CN, n 1 = 225 ), Mild

ognitive Impairment (MCI, n 2 = 390 ), and Alzheimer’s Disease

AD, n 3 = 173 ). Details of the demographics and clinical character-

stics of the sample used in this paper are presented in Table 1 . 

ADNI is also a longitudinal project, in which the measurements

re collected repeatedly over a 6-month or 1-year interval. The in-

ormation of subjects used in this study at different time points is

iven in Table 2 . The date when the patient performs the screening

n the hospital for the first time is called baseline, and the time

oint for the follow-up visits is denoted by the duration starting

rom the baseline. For instance, we use the notation “M06” to de-

ote the time point half year after the first visit. Currently ADNI

as up to 48 months follow-up data for some patients. The amount

f instances of each task is different in Table 2 since the data sets

ecrease in size due to the drop out of some patients for various

easons. 

In this work, we remove features with more than 10% missing

ntries (for all patients and all time points), exclude patients with-

http://adni.loni.ucla.edu
http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.ucla.edu/research/mri-post-processing/
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out baseline MRI records and complete the missing entries using

the average value. 

2.2. S parse G roup L asso with shared S ubspace based Multi-Task 

Learning (SGLS-MTL) Formulation 

Assume that we are given m supervised learning tasks. The ma-

jority of the proposed methods fall into the class of regularized

multi-task learning, which has the form: 

min 

 ∈ R p×m 
J = L (W ; y, X ) + λR (W ) (1)

where X = (x 1 , . . . , x n ) 
T ∈ R 

n ×p is the training set ( n and p are

the number of training instances and dimensionality of x i ), Y =
(y 1 , . . . , y n ) 

T ∈ R 

n ×m , where y i is the target value vector (class la-

bel or cognitive score) for x i and m is the number of tasks, W ∈
R 

p×m is a coefficient matrix need to be learned. L (·) denotes the

loss function. In the context of regression, we assume the loss

L R (W ;Y , X ) = ‖ Y − XW ‖ 2 
F 

= 

∑ n 
i =1 ‖ y i − x i W ‖ 2 

2 
. R is the regular-

izer encouraging the shared representation among the tasks and

λ is a regularization parameter needed to be chosen by cross vali-

dation. 

Shared structure learning [31,36,43] has been successfully used

in multi-label image annotation [36] , multi-view learning [37] and

multimedia analysis [38] . Shared structure learning assumes that

there is a certain common information shared among data sam-

ples and aims to search for a suitable low dimensional subspace

of the given input feature space to uncover the shared structure

across tasks. It has been claimed in [43] that there should be a

shared subspace across multiple tasks and uncovering this shared

subspace can improve classification performance. The concepts of

an instance are predicted by its vector representation in the origi-

nal feature space together with the embedding in the shared sub-

space, which can be generalized as the following demonstration:

f (x ) = xu = xw + xQ 

T v , where u ∈ R 

p×1 , w ∈ R 

p×1 and v ∈ R 

h ×1

where h is the dimension of the shared subspace, are the weight

vectors for the full feature space, the high-dimensional feature

space and the shared low dimensional feature space (a linear form

of feature map is considered for simplicity), respectively. Q ∈ R 

h ×p

is a (to be learnt) linear low dimensional map common across the

tasks and is constrained to be a matrix with orthonormal rows,

Q 

T Q = I. Ando and Zhang [43] assumed that the tasks share a la-

tent low-dimensional subspace and proposed an Alternating Struc-

ture Optimization (ASO) approach explicitly learn this subspace in

the learning formulation. The formulation of ASO is non-convex

and the alternating structure optimization procedure is not guar-

anteed to find a global optimum. In [31] , Chen et al. presented an

improved ASO formulation (called iASO) given by: 

arg min 

, V , Q T Q= I 
‖ 

X U − Y ‖ 

2 
F + λ1 

∥∥U − Q 

T V 

∥∥2 

F 
+ λ2 ‖ 

U ‖ 

2 
2 , (2)

where U = W + Q 

T V . The first regularization term 

∥∥U − Q 

T V 

∥∥2 

F 
controls the task relatedness by sharing a low-dimensional feature

map, while the second regularization term ‖ U ‖ 2 2 controls the com-

plexity of the models for each task. This formulation provides the

foundation for our SGLS-MTL method. Then, Chen et al. proposed

a convex relaxation of ASO (cASO) algorithm to solve the convex

relaxation efficiently, and further showed that cASO converges to a

global optimum. However, it is generally difficult for shared struc-

ture learning to interpret or investigate the results. Additionally,

feature selection plays an important role in the diagnosis of AD

since the extracted features or original neuroimaging data is ex-

tremely high dimensional. It is advantageous to exert the sparse

feature selection models on the regularization term to discover a

small set of imaging biomarkers that are easier to interpret and

deal with the curse of dimensionality. 
Sparse methods have attracted a great amount of research ef-

orts in the past decade due to its sparsity-inducing property, lead-

ng to interpretable models by effective feature selecting [30] . Spar-

ity usually means that only a small portion of the solution compo-

ents are non-zero. Inspired by the recent success of sparse meth-

ds, we develop a novel multi-task learning formulation to ex-

lore the correlation existing in imaging and cognitive measure or

iagnosis status by a sparse shared structure regularization. The

parse shared structure regularization incorporates a hierarchical

roup sparsity and a subspace uncovering regularization in a uni-

ed framework, to learn a shared representation from multiple re-

ated tasks with considering the shared subset of features on the

riginal feature subspace and shared subspace structure on the la-

ent low-dimensional subspace jointly. Specifically, the regulariza-

ion R (·) in our formulation consists of two parts: the first part

 1 is a hierarchical group sparsity and contributed from the rep-

esentations in the original data space, and the second one R 2 is

ontributed from the embedding in the latent subspace. R 1 con-

ists of a � 2, 1 -norm and a group � 2, 1 norm G 2, 1 , to identify the

iscriminate features and regions relevant to infer cognitive out-

omes and disease status from MRI. The � 2, 1 -norm regularization

 

U ‖ 2 , 1 = 

∑ p 
i =1 

‖ u i. ‖ 2 , which is known to be an effective model for

parse feature selection for simultaneously enforcing sparsity over

eatures for all tasks. The � 2, 1 -norm of U makes it sparse, mean-

ng that some of its rows shrink to zero. Besides, in the context of

D, the groups correspond to specific ROIs in the brain, and the

ndividual shape features are specific properties of those regions.

he multiple shape measures from the same ROI tend to be se-

ected together as joint predictors, and use this prior knowledge

f interrelated structure to group relevant shape features together

n the same ROI to guide the learning process. We assume the p

eatures to be divided into k disjoint groups G = { G 1 , . . . , G k } , with

ach group having p j features respectively. For our data, the num-

er of features in each group ranges is 4 for cortical region or 1 for

ubcortical region. included an extra group regularization to group

he weights corresponding to the same brain region across multi-

le time points, which allowed the selection of brain regions based

n multiple time points. 

To enforce simultaneous group sparsity and allow the selec-

ion of brain regions, we introduce a group � 2, 1 norm regu-

arization which groups the weights corresponding to the same

rain region and induces the desirable group-sparse structure in

he matrix U . The group � 2, 1 norm is defined as: ‖ U ‖ G 2 , 1 =
 k 
j=1 w j 

√ ∑ 

i ∈ G j ‖ U i ‖ 2 2 , where w j = 

1 √ 

p j 
is the weight for j -th

roup. Hence, the hierarchical sparsity regularization in R 1 can

xploit the correlation of tasks from the perspective of features

nd ROIs, leading to yield an anatomically meaningful biomarker

iscovery result. R 2 in the regularization is a subspace structure

enalty controlling the task relatedness with shared subspace, to

ncourage an underlying predictive latent subspace structure. In-

orporating all of the above norms in the form of regularizers into

he proposed multi-task learning model, the following minimiza-

ion problem of SGLS-MTL is formulated: 

min 

U , V , Q T Q= I 
‖ 

X U − Y ‖ 

2 
F + λ1 ‖ U ‖ 2 , 1 + λ2 ‖ U ‖ G 2 , 1 

+ λ3 ‖ U − Q 

T V ‖ 

2 
F (3)

Note that λ1 , λ2 and λ3 indicate the importance of the corre-

ponding regularization component. 

• Remark 1. Although we only consider the least squares loss

function here, the above formulation can be easily generalized

to other convex loss functions, such as hinge loss or logistic

function. 
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• Remark 2. In the proposed general multi-task learning frame-

work, both classification and regression (heterogeneous multi-

task learning) can be performed simultaneously in a unified for-

mulation (Experiment II). 
• Remark 3. Several existing models can be viewed as special

cases of the SGLS-MTL formulation. 

– When λ2 = λ3 = 0 , SGLS-MTL simplifies to sparse multi task

learning with � 2, 1 -norm norm. The � 2, 1 -norm regularized

MKL has been used to select features that could predict all

or most clinical scores in [21] . 

– When λ2 = 0 and ‖ U ‖ 2, 1 is replaced by ‖ U ‖ 2 , SGLS-MTL

simplifies to shared structure learning [31] . 

– When λ1 = λ3 = 0 , SGLS-MTL simplifies to a simple group

lasso learning, which is a single task learning method

(where m = 1 ), with group lasso. 

– If λ3 = 0 , it reduce to sparse group lasso without shared

subspace learning, named SGL-MTL and the formation is the

same as Sparse Multimodal Learning (SMML) proposed in

[32] . The difference is that our algorithm employ proximal

gradient to solve the non-smooth norm while SMML focuses

on a sub-gradient approach, which can be slow and inaccu-

rate at times. The comparison is shown in the experiment

section. 

.3. Optimization 

The optimal V to the objective function in Eq. (3) can be ex-

ressed in the form of a function on Q and U . It can be veri-

ed that R (U , V , Q ) in Eq. (3) is minimized with respect to V

hen V = QU . Therefore we can denote: R 

′ (U , V , Q ) = λ1 ‖ U ‖ 2 , 1 +
2 ‖ U ‖ G 2 , 1 + λ3 T r(U 

T (I − Q 

T Q ) U ) . The orthonormality constraint

n Q is non-convex, which makes the optimization problem non-

onvex. One method is to relax the feasible domain of it into a

onvex set firstly. Let S = Q 

T Q , the feasible domain of the opti-

ization problem can be relaxed into a convex set according to

31] , and a convex formulation of the problem in Eq. (3) can be

efined as follows: 

arg min 

U , S 
‖ 

X U − Y ‖ 

2 
F + λ1 ‖ U ‖ 2 , 1 + λ2 ‖ U ‖ G 2 , 1 

+ λ3 Tr (U 

T (I − S) U ) (4) 

s.t. Tr (S) = h, S � I, S ∈ R 

p 
+ 

For the optimization problem in Eq. (4) , we symbolically denote

he optimization variables U and S as: M = [ U S ] , U ∈ R 

p×m , S ∈
 

p×p . The optimization can be done efficiently using Accelerated

roximal Gradient (APG) [28] , which has been widely applied for

olving mathematical formulations in the areas of machine learn-

ng due to its optimal convergence rate among all the first-order

ethods as well as its scalability for large-scale data analysis. It

pdates the intermediate solution point toward the globally opti-

al solution via computing the proximal operator and estimating

he step size. APG maintains two sequences of variables: a feasible

olution sequence { M 

( t ) } and a searching point sequence 
{

ˆ M 

(t) 
}

.

he general scheme of APG can be described: at the t -th iteration

f APG, the solution point M 

(t+1) can be computed via: 

 

(t+1) = prox 

λ1 ,λ2 

L 
( ˆ M 

(t) ) = arg min 

M 

R 

λ1 

λ2 
(M) 

+ 

L 

2 

‖ M −
(

ˆ M 

(t) − 1 

L (t) 
∇ f ( ˆ M 

(t) ) 
)
‖ 

2 , (5) 

here ˆ M 

(t) denotes a searching point constructed from a lin-

ar combination of M 

( t ) and M 

(t−1) from previous two iterations,

f (M) = ‖ XU − Y ‖ 2 F + λ3 Tr (U 

T (I − S) U ) and R 

λ1 

λ2 
(M) = λ1 ‖ U ‖ 2 , 1 +

2 ‖ U ‖ G 2 , 1 denote the smooth component and non-smooth com-

onent of Eq. (4) , respectively. L ( t ) denotes a stepsize at the
 -iteration, which is determined by a iteratively increasing its

alue until the inequality(backtracking line search) f (M 

(t+1) ) ≤
f ( ˆ M 

(t) ) + 〈 M 

(t+1) − ˆ M 

(t) , ∇ f ( ˆ M 

(t) ) 〉 + 

L 
2 ‖ M 

(t+1) − ˆ M 

(t) ‖ 2 is satis-

ed. The procedure in Eq. (5) is commonly referred to as the prox-

mal operator [39] . The efficient computation of the proximal op-

rator is critical for the practical convergence of APG, as it is in-

olved in each iteration of the APG algorithm. For the optimization

roblem in Eq. (4) , its proximal operator can be expressed as an

ptimization problem of the general form: 

min 

U , S 

L 
2 

∥∥U − ˜ U 

∥∥
F 

+ 

L 
2 

∥∥S − ˜ S 
∥∥

F 
+ R 

λ1 

λ2 
(U ) 

.t. Tr (S) = h, S � I, S ∈ R 

p 
+ , (6) 

here ˜ U = 

ˆ U 

(t) − 1 
L (t) ∇ ˆ U 

f ( ˆ M 

(t) ) and 

˜ S = 

ˆ S (t) − 1 
L (t) ∇ ˆ S 

f ( ˆ M 

(t) ) ,

 ˆ U 
f ( ˆ M 

(t) ) and ∇ ˆ S 
f ( ˆ M 

(t) ) denote the derivatives of f ( ˆ M 

(t) )

ith respect to ˆ U and 

ˆ S . Note that ∇ ˆ U 
f ( ˆ M 

(t) ) = (X X 

T + λ3 (I −
ˆ 
 

(t) )) ̂  U 

(t) − XY T , and ∇ ˆ S 
f ( ˆ M 

(t) )) = −Tr ( ̂  U 

(t) T ˆ U 

(t) ) . 

It can be easily verified that the optimization of U and S to

6) are decoupled, and can be obtained by solving two subprob-

ems with respect to U and S by fixing one of them and solving

he corresponding convex optimization problem as below. More-

ver, the optimal solution to Eq. (6) admits an analytic form as

resented below. 

• Computation of U for a given S 

When we keep S fixed and seek the optimal U , Eq. (4) becomes

n unconstrained regularization problem: 

in 

U 

L 
2 

∥∥U − ˜ U 

∥∥
F 

+ R 

λ1 

λ2 
(U ) (7) 

A key building block in optimizing U is the computation of the

roximal operator R 
λ1 

λ2 
(U ) in (7) , which is challenging to solve due

o the presence of two non-smooth terms. While proximal opera-

ors for individual simple regularizers (e.g. � 1 -norm, � 2 -norm and

roup lasso) are possible, proximal operators for a conic combina-

ion of such regularizers are more challenging. The proximal opera-

or prox 
λ1 ,λ2 
L 

( ̂  U 

(t) ) := T 
λ1 ,λ2 

L 
( ̃  U 

(t) ) exhibits a certain decomposition

roperty, based on which we can efficiently compute in two steps,

s outlined below: 

˜ 
 

(t) = T λ1 

L 
( ̃  U 

(t) ) , (8) 

 

(t+1) = T λ2 

L 
( ̃  B 

(t) ) = T λ1 ,λ2 

L 
( ̃  U 

(t) ) . (9) 

ext we show that both of these steps can be executed effi-

iently using suitable extensions of soft-thresholding. The update

n (8) can be written as: 

˜ 
 

(t) = T λ1 

L 
( ̃  U 

(t) ) 

= arg min 

˜ B ∈ R p×m 

{
λ1 ‖ ̃

 B ‖ 2 , 1 + 

L (t) 

2 

‖ ̃

 B − ˜ U 

(t) ‖ 

2 
F 

}
. (10) 

Following [44] , the row-wise updates can be done by soft-

hresholding as: 

˜ 
 

(t) 
i 

= 

max {‖ ̃

 u 

(t) 
i 

‖ 2 − λ1 

L (t) , 0 } 
‖ ̃

 u 

(t) 
i 

‖ 2 

˜ u 

(t) 
i 

, (11) 

here ˜ b (t) 
i 

, ˜ u 

(t) 
i 

are the i -th rows of ˜ B 

(t) , ˜ U 

(t) respectively. 

Next we focus on the update (9) , which can be written as: 

 

(t+1) = T λ2 

L 
( ̃  B 

(t) ) 

= arg min 

U∈ R p×m 

{
λ2 ‖ U ‖ G 2 , 1 + 

L (t) 

2 

‖ U − ˜ B 

(t) ‖ 

2 
F 

}
. (12) 
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Following [45] , the group specific row-wise updates can be

done by soft-thresholding as: 

 

(t+1) 
R j 

= 

max {‖ ̃

 B 

(t) 
R j 

‖ F − λ2 

L (t) , 0 } 
‖ ̃

 B 

(t) 
R j 

‖ F 

˜ B 

(t) 
R j 

, (13)

where U R j 
, ˜ B R j 

are group specific p j × m sub-matrices correspond to

group R j in U R j 
, ˜ B R j 

( p j denotes the number of features in group R j )

respectively. The proximal operators of these two non-smooth reg-

ularizations admit closed form solutions, and thus both the steps

(8) and (9) can be efficiently computed. 

• Computation of S for a given U 

The optimal M to (6) can be obtained by solving 

min 

S 

∥∥S − ˜ S 
∥∥

F 

s.t. T r(S) = h, S � I, S ∈ R 

p 
+ (14)

Let ˜ S (t) = P (t) �P (t) T be its singular value decomposition (SVD),

where P (t) ∈ R 

p×p is column-wise orthogonal, and rank ( ̃  S (t) ) = q .

� = diag ( ̃  σi , . . . , ˜ σp ) ∈ R 

p×p is diagonal with the eigenvalues on its

main diagonal, where ˜ σ1 ≥ ˜ σ2 ≥ . . . ≥ ˜ σq > 0 = ˜ σq +1 = . . . = ˜ σp . Ac-

cording to the theorem in [46] , let �∗ = diag (σ ∗
1 , . . . , σ

∗
q , 0 ) ∈ R 

p×p

where 
{
σ ∗

i 

}q 

i =1 
is the optimal solution to the following optimiza-

tion problem: 

min 

{ σi } i =1 

q ∑ 

i =1 

(σi − ˜ σi ) 
2 , s.t. 

q ∑ 

i =1 

(σi ) = h, 0 ≤ σi ≤ 1 (15)

Then, the global solution of Eq. (14) is given by S ∗ =
P (t) �∗P (t) T . The optimization problem in Eq. (15) can be solved

via a linear time algorithm. In summary, we present the algorithm

of optimizing Eq. (4) in Algorithm 1 , the change of objective values

Algorithm 1 AGP Method for optimizing SGLS-MTL. 

Input: Training Data X and Y , L 0 ≥ 0 , a (1) = 1 , λ1 , λ2 , and λ3 

Output: M 

1: Initialize ˆ U 

(0) and 

ˆ S (0) 

2: t = 0 

3: repeat 

4: Find the smallest nonmajority integers i t such that

with f (M 

(t+1) ) ≤ f ( ˆ M 

(t) ) + 〈 M 

(t+1) − ˆ M 

(t) , ∇ f ( ˆ M 

(t) ) 〉 +
L 
2 ‖ M 

(t+1) − ˆ M 

(t) ‖ 2 , and set L (t) = 2 i t L (t−1) 

5: Optimize U 

(t+1) with fixed 

ˆ S (t) according to Eq. (11) and (13)

6: Optimize S (t+1) with fixed U 

(t+1) according to Eq. (15) 

7: M 

(t+1) = 

[
U 

(t+1) S (t+1) 
]
, a (t+1) = 

(1+ 
√ 

1+4(a (t) ) 2 ) 
2 

8: ˆ M 

(t+1) = M 

(t+1) + 

a (t+1) − 1 

a (t+1) 
(M 

(t+1) − M 

(t) ) 

9: t = t + 1 

10: until convergence criterion is satisfied 

11: if convergence then 

12: M = M 

(t+1) 

13: end if 

in two successive steps is smaller than a prespecified value (e.g.,

10 −5 ). The optimization can guarantee the global convergence ac-

cording to Theorem 4.2. in [31] . 

2.4. The sparse group lasso with shared subspace learning for cluster 

analysis 

In terms of the label availability, the machine learning meth-

ods can be broadly categorized into supervised methods and un-

supervised methods. The proposed sparse group lasso with shared

subspace learning method can be extended to the clustering when
oth the clinical label and cognitive scores are unknown. Cluster-

ng is a well-established machine learning methodology aimed at

rouping examples (patients) so that instances in the same clus-

er are as similar as possible. To identify the subpopulations of

he ADNI data that are homogeneous with respect to the MRI fea-

ures, we present two specific clustering algorithms based on the

parse group lasso with shared subspace learning: the first one

s shared Subspace Multi-task Clustering with Sparse Group Lasso

named SGLS-MTC); the other is Multi-Subspace (Manifold) single-

ask Clustering with Sparse Group Lasso (named SGL-MSC). 

.4.1. Sparse Group Lasso with shared Subspace based Multi-Task 

lustering, SGLS-MTC 

Suppose that we want to cluster X into l clusters ( C 1 , C 2 , . . . , C l )

nder the matrix factorization framework as: 

in 

W , P 
‖ X 

T − W P T ‖ 

2 
F 

s.t. P ∈ { 0 , 1 } n k ×l 
. 

(16)

here W ∈ R 

p×l is the latent feature matrix, and P ∈ R 

n ×l is the

luster indicator, which represents the clustering assignment, such

hat P i j = 1 if x i belongs to cluster C j and P i j = 0 otherwise. 

The problem in Eq. (16) is difficult to solve due to the constraint

n P [55,56] . Following the common relaxation for label indicator

atrix [57] , Eq. (16) can be rewritten as: 

in 

W , P 
‖ X 

T − W P T ‖ 

2 
F 

s.t. P T P = I, P ≥ 0 . 

(17)

Furthermore, according to Theorem 1 in [57] , the orthogonality

onstraint on P is to allow us to perform feature selection via W .

herefore, by incorporating the proposed hierarchical sparsity reg-

larization into the clustering model, the sparse group lasso based

lustering model (SGL-C) is formulated: 

in 

W , P 
‖ X 

T − W P T ‖ 

2 
F + λ1 ‖ W ‖ 2 , 1 + λ2 ‖ W ‖ G 2 , 1 

s.t. P T P = I, P ≥ 0 . 

(18)

The SGL-C method can only deal with a single clustering task.

hen there are multiple different but related clustering tasks,

.e. X = 

{
X 

(1) , X 

(2) , . . . , X 

(m ) 
}
, where X 

(t) ∈ R 

n t ×p is the data in

he t -th task, the clustering performance of multiple tasks can

e improved by appropriately capturing their intrinsic relationship

mong different tasks. In our work, we assume that the multiple

asks share a subspace Q ∈ R 

h ×p , where all the clustering tasks

ave similar data distribution and can be performed together. 

Here we give the objective function of our shared subspace

ased multi-task clustering with sparse group lasso regulariza-

ion: 

min 

, ̂  W , W 

(t) , P (t) 

m ∑ 

t=1 

‖ X 

(t) T − W 

(t) P (t) T ‖ 

2 
F + λ1 

m ∑ 

t=1 

‖ QX 

(t) T − ˆ W P (t) T ‖ 

2
F 

+ λ2 (‖ W 

(t) ‖ 2 , 1 + ‖ 

ˆ W ‖ 2 , 1 ) + λ3 (‖ W 

(t) ‖ G 2 , 1 + ‖ 

ˆ W ‖ G 2 , 1 )

s.t. Q 

T Q = I, P (t) T P (t) = I, P (t) ≥ 0 , t = 1 , . . . , m , 

(19)

here ˆ W ∈ R 

h ×l is the latent feature matrix in the shared sub-

pace, and each item 

ˆ W j in 

ˆ W is the mean of cluster C j of all the

asks in the shared subspace. 

The first and second terms are the clustering of each task in

ts input space and the multi-task clustering in the shared sub-

pace, respectively. The last two terms are the proposed sparse

roup lasso regularization to facilitate the selection of feature and

OI for the latent feature matrix of each task W 

( t ) and the latent

eature matrix ˆ W in the shared subspace. Note that the method
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f multi-task clustering without the regularization of sparse group

asso is called MTC. 

Then, we derive an efficient alternating algorithm to solve this

roblem of Eq. (19) . 

(1) Update of ˆ W 

Given Q and W 

( t ) , optimizing Eq. (19) with respect to ˆ W is

quivalent to the following: 

in 

ˆ W 

‖ QX 

T − ˆ W P T ‖ 

2 
F + λ2 ‖ 

ˆ W ‖ 2 , 1 + λ3 ‖ 

ˆ W ‖ G 2 , 1 (20) 

here X = 

[
X 

(1) ; X 

(2) ; . . . ; X 

(m ) 
]

∈ R 

n ×p , P = 

{
P (1) ; . . . ; P (m ) 

}
∈

 

n ×l . 

Using the fact that P T P = I, we can reformulate Eq. (20) as: 

in 

ˆ W 

‖ 

ˆ W − QX 

T P ‖ 

2 
F + λ2 ‖ 

ˆ W ‖ 2 , 1 + λ3 ‖ 

ˆ W ‖ G 2 , 1 (21)

he above equation can be composited by the introduced proximal

omposition algorithm in Eq. (9) and optimized by both the row-

ise and group-wise soft-thresholding according to Eqs. (11) and

13) . 

(2) Update of W 

( t ) 

Given P 

( t ) , optimizing Eq. (19) with respect to W 

( t ) is equivalent

o optimizing: 

in 

W 

(t) 

m ∑ 

t=1 

‖ X 

(t) T − W 

(t) P (t) T ‖ 

2 
F + λ2 ‖ W 

(t) ‖ 2 , 1 + λ3 ‖ W 

(t) ‖ G 2 , 1 (22)

Due to P (t) T P (t) = I, we can reformulate (22) as: 

in 

W 

(t) 

m ∑ 

t=1 

‖ W 

(t) − X 

(t) T P (t) ‖ 

2 
F + λ2 ‖ W 

(t) ‖ 2 , 1 + λ3 ‖ W 

(t) ‖ G 2 , 1 (23)

he proximal operator for the composite regularizer can also be

omputed efficiently in two steps. 

(3) Update of P 

( t ) 

Given QW 

( t ) and 

ˆ W are fixed, we have 

in 

P (t) 
‖ X 

(t) T − W 

(t) P (t) T ‖ 

2 
F + λ1 ‖ QX 

(t) T − ˆ W P (t) T ‖ 

2 
F 

s.t. P (t) T P (t) = I, P (t) ≥ 0 . 

(24) 

The Lagrangian function of Eq. (24) is: 

 (P (t) ) = ‖ X 

(t) T − W 

(t) P (t) T ‖ 2 F + λ1 ‖ QX 

(t) T − ˆ W P (t) T ‖ 2 F 

−tr (α(P (t) T P (t) − I)) − tr (βP (t) ) 

= tr (X 

(t) X 

(t) T − 2 X 

(t) W 

(t) P (t) T + P (t) W 

(t) T W 

(t) P (t) T ) 

+ λ1 tr (X 

(t) Q 

T QX 

(t) T − 2 X 

(t) Q 

T ˆ W P (t) T + P (t) ˆ W 

T ˆ W P (t) T ) 

−tr (α(P (t) T P (t) − I)) − tr (βP (t) ) (25) 

where α ∈ R 

l×l and β ∈ R 

l×n are Lagrangian multipliers. 

Setting ∂ 2 L (P (t) ) 

∂P (t) = 0 , we obtain: 

2 X 

(t) W 

(t) + 2 P (t) W 

(t) T W 

(t) − λ1 (2 X 

(t) Q 

T ˆ W − 2 P (t) ˆ W 

T ˆ W ) 

−2 P (t) αT − βT = 0 (26) 

The above function equivalently becomes: 

T = −2 �1 + 2 P (t) �2 (27)

here �1 = X 

(t) W 

(t) + λ1 X 

(t) Q 

T ˆ W and �2 = W 

(t) T W 

(t) +
1 

ˆ W 

T ˆ W − α. 

According to the Karush-Kuhn-Tucker condition, βT 
i j 

P (t) 
i j 

= 0 , we

et: 

−�1 + P (t) �2 

]
i j 

P (t) 
i j 

= 0 (28) 

Introduce �1 = �+ 
1 

− �−
1 

and �2 = �+ 
2 

− �−
2 

where 
+ 
1 
(i, j) = 

| �1 (i, j) | + �1 (i, j) 
2 and �−

1 
(i, j) = 

| �2 (i, j) |−�2 (i, j) 
2 [58] ,

e obtain: 

�−
1 + P (t) �+ 

2 − �+ 
1 − P (t) �−

2 

]
i j 

P (t) 
i j 

= 0 (29) 

c  
Eq. (29) leads to the following updating formula: 

 

(t) 
i j 

← P (t) 
i j 

√ [
�+ 

1 
+ P (t) �−

2 

][
�−

1 
+ P (t) �+ 

2 

] (30) 

(4) Update of Q 

Optimizing Eq. (19) with respect to Q yields the equation: 

in 

Q 

m ∑ 

t=1 

‖ QX 

(t) T − ˆ W P (t) T ‖ 

2 
F , 

s.t. Q 

T Q = I . 

(31) 

hich results in the following problem: 

in 

Q 
‖ Q − ˆ W P T (X 

T ) −1 ‖ 

2 
F 

s.t. Q 

T Q = I. 
(32) 

We can further write the above equation into a more compact

orm as: 

min 

 

T Q= I 
‖ Q − �‖ 

2 
F (33) 

here � = 

ˆ W P T (X 

T ) −1 . 

It can be solved using the lemma in [59] . Given the objective

unction with respect to Q in Eq. (33) , the optimal Q 

∗ is defined

s: Q 

∗ = �l �
T 
r , where �l and �r are the left and right singular

ectors of the singular value decomposition (SVD) of �. 

The pseudo code of SGLS-MTC is summarized in Algorithm 2 . 

lgorithm 2 The optimization of SGLS-MTC. 

nput: Training Data 
{

X 

(t) 
}m 

k =1 
, regularization parameters λ1 , λ2 ,

λ3 , and the amount of cluster l 

utput: The partitions of data P (t) , t = 1 , . . . , m 

1: Initialize P (t) using K-means, t = 1 , . . . , m ; 

2: Initialize W 

(0) ; 

3: repeat 

4: Update ˆ W according to Eq. (11) and Eq. (13) 

5: for t = 1 to m do 

6: Update W 

(t) according to Eq. (11) and Eq. (13) 

7: Update P (t) according to Eq. (30) 

8: end for 

9: Update Q according to Eq. (33) 

10: until convergence criterion is satisfied 

.4.2. Multi-Subspace(Manifold) single-task Clustering with Sparse 

roup Lasso, SGL-MSC 

Subspace clustering is an important unsupervised learning re-

earch topic. By modeling the distribution of data as a union of

ubspaces multiple subspace models improve on the single sub-

pace assumption [63] . In many real-world problems, however, the

ata points lie in multiple subspaces (manifold) and the mem-

ership of the data points to the subspaces might be unknown

55] . Therefore, there is a need to simultaneously cluster the data

nto multiple subspaces and find a low-dimensional subspace fit-

ing each group of points. In the case of linear manifolds, there are

any existing subspace clustering methods including K-subspaces

61] , and Generalized Principal Component Analysis (GPCA) [62] ,

nd Stable Subspace (SSS) [63] . However, all subspace clustering

ethods are formulated only for mixtures of linear manifolds and

o not work in the presence of nonlinear manifolds. 

Locally Linear Embedding (LLE) [64] is simple nonlinear dimen-

ionality reduction method, and it assumes that the data lies on

 smooth nonlinear manifold of dimensionality h < p . LLE exploits

he fact that the local neighborhood of a point on the manifold

an be well approximated by the affine subspace spanned by its k
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nearest neighbors. It has been applied in transforming multivari-

ate MRI data of regional brain volume and cortical thickness to a

locally linear space with fewer dimensions [65] . The procedure of

LLE can be summarized as follows: 

1. Select k -nearest neighbors of each data points x i using Eu-

clidean distances. 

2. Calculate the reconstructing weight matrix C = 

[
c i j 

]
n ×n 

, which

reconstructs each point x i from its k -nearest neighbors. This C

can be viewed as similarity between data points or the edge

weights of a graph whose nodes are the data points. 

min J(C) = 

n ∑ 

i =0 

∥∥∥∥∥x i −
n ∑ 

j=0 

c i j x i 

∥∥∥∥∥
2 

(34)

3. Reconstruct represented z i = x i Q 

T by learning a projection ma-

trix Q ∈ R 

h ×p . To maintain the intrinsic geometrical feature of

the data after the embedding process, the reconstruction error

function must be minimized: 

min J(Z) = 

n ∑ 

i =0 

∥∥∥∥∥z i −
n ∑ 

j=0 

c i j z i 

∥∥∥∥∥
2 

= tr (XQ 

T MQX 

T ) 

s . t . XQ 

T QX 

T = I 

(35)

where M = (I − C) T (I − C) . 

LLE is not designed to deal with the data that are disconnected,

i.e. separated into groups. Polito proposed a variant of LLE for the

purpose of clustering data living on different manifolds [60] . The

algorithm can simultaneously group the data and calculate local

embedding of each group. For a union of separated manifolds, the

LLE algorithm computes a matrix whose null space contains vec-

tors giving the segmentation of the data. However, according to

the Proposition 2 in [60] , there exist l vectors 

{ 

v l 
j=1 

} 

in the M

constructed from the local geometry of the manifold such that v j 
corresponds to the j th group of points, i.e. v i j = 1 if the i th data

point is in the j-th group, and v i j = 0 otherwise. However, these

vectors are not the only vectors (the embedding vectors and mem-

bership vectors) in the null space of M and spectral clustering is

not directly applicable. Goh et al. presented an algorithm to allows

to distinguish the membership vectors from other vectors in the

null space by analyzing of the variance of these vectors. Thanks to

Proposition 5 in [66] , the membership eigenvectors can be com-

puted as v = B �− 1 
2 γi , where B is a basis for the null space of

M , γ i are the eigenvectors of �− 1 
2 B 

T (I − J) B �− 1 
2 associated with

its smallest l eigenvalues and � = B 

T B . Note that J = 

1 

n 
1 n ×1 1 

T 
n ×1 .

By identifying the membership vectors in M , the algorithm pro-

posed in [66] allows simultaneous nonlinear dimensionality reduc-

tion and manifold clustering. 

However, there are two significant problems in the joint non-

linear dimensionality reduction and manifold clustering: (1) the

high dimensional MRI features with irrelevancy and redundancy

may negatively influence the clustering performance and nonlin-

ear dimensionality reduction; (2) the learned projection Q in Eq.

(35) is a linear combination of all the original features, thus it is

often difficult to interpret the results. In our work, we incorporate

the sparse learning into the multi-subspace clustering by using the

proposed regularization of sparse group lasso on the projection

matrix Q , which leads to both the row-sparsity and group-sparsity

of the projection matrix. 

By incorporating the sparse group lasso into the objective func-

tion of learning of the projection matrix Q in Eq. (35) function, we
ave: 

in 

Q 
tr (XQ 

T MQX 

T ) + λ1 ‖ Q‖ 2 , 1 + λ2 ‖ Q‖ G 2 , 1 

s . t . tr (XQ 

T QX 

T ) = I 
(36)

According to Theorem 1 in [67] , the Q can be obtained through

he following two steps: 

1. Solve the eigen-problem in Eq. (37) to get Z ; 

MZ = �Z (37)

2. Obtain a Q in Eq. (38) ; 

in (XQ 

T − Z) + λ1 ‖ Q‖ 2 , 1 + λ2 ‖ Q‖ G 2 , 1 , (38)

The above equation can be composited by the introduced prox-

mal composition algorithm in Eq. (9) and optimized by both

he row-wise and group-wise soft-thresholding according to Eqs.

11) and (13) . 

Based on the multi-subspace clustering and sparse group lasso

egularization, we propose to iteratively repeat the two mains

teps (clustering and representation learning) to progressively im-

rove the clustering results. In the representation learning, the di-

ensionality reduction and feature selection can be jointly per-

ormed according to Eqs. (37) and (38) . Here we use the selected

eatures by sparse group lasso to reduce the irrelevant features,

hich in turn leads to a better clustering results. This is repeated

ntil the process converges (details are given in Algorithm 3 ). 

lgorithm 3 The optimization of SGL-MSC. 

nput: Training Data X , regularization parameters λ1 , λ2 and the

amount of cluster l. 

utput: The partitions of data P , and lower dimensional repre-

sentation Z 

1: Initialization: Feature selected indicator ˆ I = [ 1 , 1 , . . . , 1 ] 

2: repeat 

3: Construct the dataset X 

′ = X � ˆ I by feature selecting with

selected feature indicator ˆ I . (Note that X 

′ = X � ˆ I denotes

x ′ 
i, j 

= x i, j ̂
 I j , for all i, j.) 

4: Apply the LLE algorithm on X 

′ to obtain the matrix M. 

5: Compute a basis B for the null space of M. 

6: Compute the matrix Q = B 

T B and obtain the membership

eigenvectors by solving a generalized eigenvalue problem ac-

cording to the Proposition 5 in [71] 

7: Apply K-means to the rows of the matrix of membership

vectors to cluster the data into m different groups, and ob-

tain the partitions of data P . 

8: for j = 1 to l do 

9: Obtain the selected feature indicator ˆ I and the lower di-

mensional representation Z according to solve the objec-

tive function of Eqs. (37) and (38) in j-th group 

10: end for 

11: Obtain a common selected feature indicator ˆ I by intersecting

each selected feature indicator of the multiple groups 

12: until Convergence. 

. Experiment 

.1. Experiment I: Regression for baseline cognitive measures 

Five sets of baseline cognitive scores widely used clini-

al/cognitive assessment scores [47,51,53] were employed in this

tudy, including Alzheimer’s Disease Assessment Scale cognitive to-

al score (ADAS), Mini Mental State Exam score (MMSE), Rey Au-

itory Verbal Learning Test (RAVLT) involving total score (TOTAL),



P. Cao et al. / Pattern Recognition 72 (2017) 219–235 227 

Table 3 

Comparison of root mean squared error (RMSE) of baseline methods and SGLS-MTL across all tasks (Note that � stands for the case with p ≤ 0.05). 

Methods ADAS MMSE RAVLT 

TOTAL T30 RECOG 

Single task learning Linear 1.0461 ± 0.0436 � 1.1682 ± 0.0798 � 0.8471 ± 0.0441 � 1.1615 ± 0.0195 � 0.9064 ± 0.0569 � 

Ridge 0.7839 ± 0.0584 � 0.8264 ± 0.0290 � 0.8556 ± 0.04 4 4 � 0.8638 ± 0.0477 � 0.9167 ± 0.0575 � 

Lasso 0.7861 ± 0.0496 � 0.8391 ± 0.0386 � 0.8526 ± 0.0466 � 0.8627 ± 0.0521 � 0.9130 ± 0.0509 � 

Group Lasso 0.7872 ± 0.0552 � 0.8354 ± 0.0327 � 0.8529 ± 0.0435 � 0.8611 ± 0.0415 � 0.9189 ± 0.0561 � 

Multi-task learning MTL 0.7853 ± 0.0410 � 0.8301 ± 0.0442 � 0.8510 ± 0.0568 � 0.8576 ± 0.0428 � 0.9110 ± 0.0404 � 

SGL-MTL 0.7762 ± 0.0458 � 0.8270 ± 0.0392 � 0.8389 ± 0.0536 � 0.8594 ± 0.0440 0.9049 ± 0.0395 

S-MTL 0.7745 ± 0.0573 � 0.8290 ± 0.0327 � 0.8484 ± 0.0454 � 0.8528 ± 0.0429 � 0.9113 ± 0.0582 � 

SGLS-MTL 0.7596 ± 0.0567 0.8148 ± 0.0317 0.8117 ± 0.0438 0.8387 ± 0.0430 0.9078 ± 0.0584 

Multi-task learning SMML 0.7631 ± 0.0452 � 0.8277 ± 0.0414 � 0.8526 ± 0.0505 � 0.8498 ± 0.0417 0.9172 ± 0.0411 � 

Robust-MTL 0.7819 ± 0.0549 � 0.8257 ± 0.0399 � 0.8518 ± 0.0622 � 0.8679 ± 0.0464 � 0.9155 ± 0.0437 � 

MTFL 0.7794 ± 0.0451 � 0.8495 ± 0.0308 � 0.8508 ± 0.0466 � 0.8659 ± 0.0440 � 0.9173 ± 0.0476 � 

Group-MTL 0.7724 ± 0.0507 � 0.8208 ± 0.0411 � 0.8334 ± 0.0417 � 0.8606 ± 0.0312 � 0.9109 ± 0.0512 
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AVLT 30 minutes delay score (T30) and RAVLT recognition score

RECOG). We evaluated and compared all the methods with RMSE

root mean square error) and CC(Pearson correlation coefficient)

etween the actual and predicted scores of all the test subjects.

he average and standard deviation of performance measures are

alculated by 5 cross-validation. To show the superior performance

f our algorithm, we selected several state-of-the-art or baseline

ethods for comparison: 

(1) Single task learning: Ridge regression, Lasso, Group Lasso ap-

plied independently to each task; 

(2) Basic multi-task learning: multi-task learning based on � 2, 1 -

norm regularization(MTL), multi-task learning with shared

subspace(S-MTL), multi-task group lasso based on � 2, 1 -norm

regularization (SGL-MTL). For S-MTL, we use the implemen-

tation of cASO [31] provided in MALSAR package [52] . 

(3) The state-of-the-art multi-task learning: 

SMML: Sparse Multimodal Learning [32] , which takes into ac-

ount coupled feature and group sparsity across tasks. The code

as taken from the author’s homepage: http://ranger.uta.edu/

heng/imaging-genetics/ . 

Group-MTL [48] : groups of related tasks are assumed and tasks

elonging to the same group share a common feature represen-

ation. The code was taken from the author’s homepage: http:

/www-scf.usc.edu/ ∼zkang/GoupMTLCode.zip . 

Sparse-LowRank MTL [49] (named Robust-MTL): it captures the

ask relationships using a low-rank structure, and simultaneously

dentifies the outlier tasks using a group-sparse structure. 

MTFL [50] : It employs an � 2, 1 -norm regularization term to cap-

ure the task relationship from multiple related tasks constraining

ll models to share a common set of features. We used the code

rovided in MALSAR package [52] for Sparse-LowRank MTL and

TFL. 

Regularization parameters for all the methods are using a

ested cross-validation strategy on the training data. For each of

he 5 trials, an internal 5-fold cross-validation is performed to op-

imize the parameters within the training data. The regulariza-

ion parameters of λ and the lower-dimensionality parameter h

re chosen by nested cross-validation strategy on the training data

trying values 10 −2 , 10 −1 , . . . , 10 2 , 10 3 for γ and 20 , 40 , . . . , 200 for

 ) in this study. It is worth noting that we use the same training

nd testing data in each trial for all the comparable methods for

air comparison. 

Experimental results are reported in Table 3 where the best re-

ults are boldfaced. A first glance at the results shows that SGLS-

TL generally outperforms all other compared methods on both

etrics and across all the cognitive tasks. Additionally, a statistical

nalysis is performed on the results and reported in Table 3 . As can

e seen, our proposed method achieves statistically significant re-
ults compared to all other methods on most of the results. These

esults reveal several interesting points: 

(1) Compared with 4 single task learning, all the multi-task

learning methods with different assum ptions im prove the

prediction performance by utilizing different intrinsic rela-

tionships among multiple related tasks. 

(2) The results show that sparse learning methods (Lasso, Group

Lasso, MTL, SGL-MTL, and SGLS-MTL) are more effective than

ridge regression and Linear on most tasks, which demon-

strates that sparsity can lead to better generalization. More-

over, the sparse learning methods of SGL-MTL and SGLS-MTL

show superiority over the computing non-sparse multi-task

learning involving Group-MTL, Robust-MTL. 

(3) When comparing the performances summarized in 

Tables 3 and 4 , we find that SGLS-MTL, on average, in-

creases the regression performance by 1.79%/1.87% and

2%/3.47% compared to the intermediate methods: GLS-MTL

and S-MTL in terms of RMSE/CC. The results demonstrate

that the integration of two shared structure regularization

can facilitate the prediction performance of the multi-task

learning with only each shared structure regularization. 

(4) Compared with MTL with only � 2, 1 -norm, SGL-MTL with

both � 2, 1 and G 2, 1 obtains a better performance for all re-

gression tasks. This observation verify the benefits of en-

couraging sparsity of group level. 

(5) Compared with the computing multi-task learning with

other task relatedness assumption, the performance en-

hancements by our method were 1.8%/3.5% (vs. SMML) and

2.6%/3.2% (vs. Robust-MTL), and 3%/4.2% (vs. MTFL) and

1.6%/3.1% (vs. Group-MTL) in terms of RMSE and CC. More-

over, the formulation of SGL-MTL and SMML is same, only

difference of them is the optimization algorithm. Compared

with the approximate gradient descent method used by

SMML, the accelerated proximal gradient leads to a fast and

correct algorithm for the optimization. 

The good performance of SGLS-MTL for modeling Alzheimer’s

isease can be attributed to the appealing property that it can se-

ect features a common set of biomarkers (features and ROIs) us-

ng the sparse group Lasso penalty across the whole feature space

hile simultaneously considering the correlation of multiple tasks

y exploring the shared feature subspace. 

Fig. 2 shows the histogram of regression weights of each

ethod for ADAS score predicting. From these plots, we observe

idge regression and S-MTL produced non-sparse results that are

ot appropriate for biomarker discovery while Lasso, MTL, SGL-

TL and SGLS-MTL presented a much better sparsity across all

he cortical measures, where only a small portion of the ROI-based

orphological features was identified to be relevant to the out-

http://ranger.uta.edu/~heng/imaging-genetics/
http://www-scf.usc.edu/~zkang/GoupMTLCode.zip
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Table 4 

Comparison of correlation coefficient (CC) of baseline methods and SGLS-MTL across all tasks (Note that � stands for the case with p ≤ 0.05). 

Methods ADAS MMSE RAVLT 

TOTAL T30 RECOG 

Single task learning Linear 0.4388 ± 0.0274 � 0.3291 ± 0.0435 � 0.3322 ± 0.0611 � 0.3164 ± 0.0723 � 0.1930 ± 0.0560 � 

Ridge 0.6174 ± 0.0349 � 0.5564 ± 0.0478 � 0.5111 ± 0.0747 � 0.4984 ± 0.0935 � 0.3914 ± 0.0633 � 

Lasso 0.6222 ± 0.0347 � 0.5412 ± 0.0473 � 0.5277 ± 0.0784 � 0.5137 ± 0.1059 � 0.4072 ± 0.0552 � 

Group Lasso 0.6184 ± 0.0382 � 0.5479 ± 0.0532 � 0.5222 ± 0.070 � 0.5152 ± 0.0987 � 0.3938 ± 0.0694 � 

Multi-task learning MTL 0.6233 ± 0.0323 � 0.5598 ± 0.0398 � 0.5247 ± 0.0365 � 0.5173 ± 0.0948 � 0.4108 ± 0.0165 � 

SGL-MTL 0.6345 ± 0.0392 � 0.5778 ± 0.0349 � 0.5436 ± 0.0364 � 0.5310 ± 0.0970 � 0.4237 ± 0.0248 

S-MTL 0.6328 ± 0.0301 � 0.5605 ± 0.0465 � 0.5281 ± 0.0723 � 0.5267 ± 0.1036 � 0.4204 ± 0.0696 

SGLS-MTL 0.6472 ± 0.0308 0.5879 ± 0.0417 0.5468 ± 0.0803 0.5446 ± 0.0899 0.4275 ± 0.0793 

Multi-task learning SMML 0.6371 ± 0.0381 � 0.5551 ± 0.0307 � 0.5370 ± 0.0467 � 0.5224 ± 0.0414 � 0.4174 ± 0.0473 � 

Robust-MTL 0.6281 ± 0.0311 � 0.5671 ± 0.0309 � 0.5307 ± 0.0479 � 0.5293 ± 0.0623 � 0.4198 ± 0.0403 � 

MTFL 0.6277 ± 0.0362 � 0.5612 ± 0.0347 � 0.5273 ± 0.0417 � 0.5279 ± 0.0911 � 0.4071 ± 0.0145 � 

Group-MTL 0.6411 ± 0.0326 � 0.5530 ± 0.0329 � 0.5329 ± 0.0481 � 0.5290 ± 0.0434 � 0.4219 ± 0.0425 

Fig. 2. Histogram of regression weights of all cortical measures for predicting the 

ADAS score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The learned matrix of multiple methods on learning 5 tasks from feature 

level. Red indicates positive correlation while blue indicates negative correlation. 

The bigger the magnitude of an coefficient is, the more important its MRI measure 

is in predicting the corresponding cognitive score. 
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come. On the other hand, Figs. 3 and 4 illustrate the learned matrix

of the comparable methods. From Fig. 3 we can observe the intrin-

sic sparse structural horizontal pattern of � 2, 1 -norm clearly, that

is, selecting features for all the tasks. Additionally, Ridge regres-

sion and S-MTL yielded non-sparse results, making the result hard

to interpret. Fig. 4 shows the group sparsity of the task parameters

of multiple methods. The weight of each group j is calculated by∑ k 
j=1 w j 

√ ∑ 

i ∈ G j ‖ U i ‖ 2 2 , and each row indicates a group (ROI). We

only listed the 68 cortical regions, each of which involves 4 fea-

tures as a group. Both of SGL-MTL and SGLS-MTL with group spar-

sity G 2, 1 are able to identify a underlying compact set of relevant

MRI biomarkers related to cognitive status, and we can find the

both methods present a much better sparsity across all the corti-

cal measures from group (ROI) level. Furthermore, from Figs. 3 and

4 we have the following observations: (1) SGL-MTL and SGLS-MTL

have both sparsity at the feature level and group level since they

take into account the sparsity of feature level and group level si-

multaneously; (2) SGL-MTL has more sparser than SGLS-MTL since

SGLS-MTL also consider the latent subspace at the same time,

which can influence the sparsity pattern on the original sparse. 
.2. Experiment II: jointly regression and classification 

It is known that there exist inherent correlations between the

isease diagnosis and clinical score prediction [21,24] . For better

nderstanding of the underlying mechanism of AD, we tackle the

eterogeneous tasks simultaneously in a unified framework to ex-

lore whether incorporating the classification tasks can improve

he prediction performance of cognitive outcomes. 

In this experiment, we perform the three binary classifica-

ion tasks for the diagnostic groups respectively: AD, MCI(Mild

ognitive Impairment), and NC (Normal Control). We represented

he class labels using a “1-of- m ” encoding vector [29] y i =
 y (1) , y (2) , . . . , y (m ) ] T such that y (c) = 1 if x belongs to class c

nd y (c) = 0 otherwise. The loss function of classification task is:

 C (W ; y, X ) = 

∑ n 
i =1 

[ 
log 

∑ m 

c=1 exp (x i w c ) −
∑ m 

c=1 y 
(c) 
i 

x i w c 

] 
, and the

verall loss function in Eq. (3) is L R + L C . The approach for jointly

earning regression and classification problem is called SGLS-MTL-

. The performance of only regression task and heterogeneous tasks

or our MTL model with respect to RMSE and CC is shown in

able 5 . 
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Fig. 4. The learned matrix of multiple methods on learning 5 tasks from group 

level. 

Table 5 

The results of only regression task and heterogeneous tasks 

for our MTL model with respect to RMSE and CC (Note that � 

stands for the case with p ≤ 0.05). 

Metric Score SGLS-MTL SGLS-MTL-J 

RMSE ADAS 0.7696 ± 0.0567 � 0.7447 ± 0.0601 

RMSE MMSE 0.8148 ± 0.0317 0.8025 ± 0.0395 

RMSE TOTAL 0.8278 ± 0.0438 0.8226 ± 0.0539 

RMSE T30 0.8487 ± 0.0430 � 0.8219 ± 0.0714 

RMSE RECOG 0.9078 ± 0.0584 � 0.8818 ± 0.0557 

CC ADAS 0.6472 ± 0.0308 0.6508 ± 0.0392 

CC MMSE 0.5679 ± 0.0417 0.5687 ± 0.0441 

CC TOTAL 0.5468 ± 0.0803 0.5476 ± 0.0589 

CC T30 0.5346 ± 0.0199 � 0.5518 ± 0.0337 

CC RECOG 0.4275 ± 0.0793 � 0.4418 ± 0.0326 
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From the results of Table 5 , SGLS-MTL-J consistently improved

he performance of SGLS-MTL in all the test cases, which verifies

he benefits of jointly learning from the heterogeneous tasks and

mplies that the features, ROIs and latent subspace used for these

asks were highly correlated. Moreover, the identified biomarkers

ill be correlated to memory scores and also be discriminative to

isease categories as a result, the results will be shown in next

ubsection. 

.3. Experiment III: identify MRI Biomarker with stability selection 

In Alzheimer’s disease studies, researchers are not only inter-

sted in providing better cognitive scores prediction, but mainly to

dentify which are the brain areas more affected by the disease,

hich can help to diagnose early stages of the disease and how it

preads. One of the strengths of the SGLS-MTL formulation is that

t facilitates the identification of biomarkers due to its sparse prop-

rty. 

In order to identify which areas of the brain region are closely

elated to cognitive measures, we conduct a further experiment

o select the most discriminative features and ROIs. To find stable

iomarkers (features and ROIs) with the SGLS-MTL model, a sta-
ility selection procedure is applied [54] . Stability selection [68] ,

ased on subsampling/bootstrapping, provides a general method

o perform model selection using information from a set of reg-

larization parameters. We propose to extend the idea of stability

election for feature and ROI based on multi-task learning. The sta-

ility score (between 0 and 1) of each feature or ROI is indicative

f the importance of the specific feature or ROI for multiple cog-

itive outcomes prediction tasks. We calculated the stability score

f each feature and ROI selected by SGLS-MTL for 5 tasks at the

ame time. Moreover, for obtaining the stable ROI, we computed

he average of probabilities of the features belonging to each ROI

 j ; j = 1 , . . . , k . 

Top 20 selected ROIs (cortical regions) and features (from

ortical and subcortical regions) by our SGLS-MTL with stabil-

ty selection method on regression task are shown in Table 6 .

e found that the imaging biomarkers identified by SGLS-MTL

ielded promising patterns that are expected from prior knowl-

dge on neuroimaging and cognition. Some important features are

elected, such as Hippocampus, Entorhinal, Middle Temporal Gyri

nd Fusiform, are highly relevant to the cognitive impairment. The

rain regions that were selected for cognitive performance pre-

iction, as well as the heterogeneous tasks for cognitive perfor-

ance prediction and diagnosis are consistent with results re-

orted in previous studies [47,53] , which demonstrates the effec-

iveness of our proposed framework in identifying correct biomark-

rs closely related to cognitive measures. These included the En-

orhinal [71,73] , Hippocampus [69–71] , Mid.Temporal [71] , Parahip-

ocampal [69,72] , Bankssts [71] , Fusiform [76] , Paracentral [74] ,

mygdala [71,77] . The fact that our findings are consistent with

esults reported in previous studies demonstrates the correctness

f the discovered biomarkers relevant to reveal the complex re-

ationships between MRI measures and cognitive scores. Further-

ore, we observe that the most of the top ranked MRI features in

erms of prediction power are based on the average cortical thick-

ess (TA) measurement, which implies the effectiveness of corti-

al thickness and is consistent with the previous studies [75] . On

he other hand, the features based on volume and surface area

SA) estimation are less predictive. While most top markers are

hickness measures from cortical regions, two markers are volume

easures from subcortical structures including hippocampus and

mygdala. 

For better understanding of the underlying mechanism of AD,

e can also find the identified neuroimaging biomarkers relevant

o memory scores and disease categories at the same time by

ointly learning the heterogeneous tasks. We found some regions

dentified by the heterogeneous tasks and only the regression task

re common, such as Hippocampus, Entorhinal, Mid.Temporal and

usiform, which implies that the tasks of cognitive outcomes pre-

iction and diagnosis are highly correlated. Figs. 5 and 6 show the

ost relevant region areas for predicting all cognitive scores and

ll cognitive scores as well as clinical status, respectively. 

.4. Experiment IV: regression for future cognitive measures 

In the previous experiments, the regression model is built for

rediction baseline cognitive measures of on MRI data obtained at

he baseline. 

In this experiment, we use the longitudinal dataset from ADNI

o further evaluate the performance of our proposed method. For

D, such longitudinal data usually consists of measurements at a

tarting time point ( t = 0 ), after 6 months ( t = 6 ), after 12 months

 t = 12 ), after 24 months ( t = 24 ), and so on usually up to 48

onths ( t = 48 ). We formulate the prediction of clinical scores at a

equence of time points as a multi-task regression problem, where

he prediction of a clinical score for each time step is a task. In this

xperiment, we predict future ADAS-Cog scores of multiple times
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Table 6 

Top 20 selected features and ROIs by our proposed method. 

Regression Jointly regression and classification 

ROI Feature ROI Feature 

Entorhinal(R) SV_Hippocampus(L) Hippocampus(L) SV_Hippocampus(L) 

Hippocampus(L) TA_Mid.Temporal(L) Entorhinal(R) CV_Entorhinal(R) 

Mid.Temporal(L) CV_Entorhinal(R) Mid.Temporal(L) TA_Inf.Temporal(L) 

Parahippocampal(L) TS_Mid.Temporal(R) Inf.Temporal(L) TA_Entorhinal(R) 

Inf.Temporal(L) TA_Entorhinal(R) Parahippocampal(L) TS_Entorhinal(R) 

Entorhinal(L) TA_Inf.Temporal(L) Inf.Temporal(R) CV_Inf.Temporal(L) 

Fusiform(R) CV_TransverseTemporal(R) Entorhinal(L) TS_TemporalPole(R) 

Paracentral(L) TA_Entorhinal(L) TransverseTemporal(R) TS_Paracentral(L) 

Bankssts(L) TA_Inf.Temporal(L) ParsOpercularis(R) TA_Entorhinal(L) 

TemporalPole(L) TS_Entorhinal(L) TemporalPole(R) SV_Inf.LateralVentricle(L) 

Precentral(R) TA_TransverseTemporal(R) Fusiform(L) TA_Fusiform(R) 

CaudalAnt.Cingulate(L) CV_Entorhinal(L) CaudalMid.Frontal(R) TA_Parahippocampal(L) 

TransverseTemporal(L) TA_Fusiform(R) Paracentral(L) TA_Mid.Temporal(R) 

Paracentral(R) TA_Bankssts Mid.Temporal(R) CV_TransverseTemporal(R) 

Parahippocampal(R) TA_Parahippocampal(L) Amygdala(L) CV_Cuneus(L) 

Fusiform(L) TA_Inf.Parietal(L) Precuneus(L) CV_Paracentral(L) 

ParsOpercularis(L) CV_Fusiform(R) Paracentral(R) TS_ParsOpercularis(R) 

TemporalPole(R) TS_TransverseTemporal(R) FrontalPole(L) TS_Sup.Frontal(L) 

IsthmusCingulate(L) SV_Amygdala(R) Precentral(R) CV_RostralAnt.Cingulate(R) 

MedialOrbitofrontal(L) TS_Paracentral(L) Sup.Frontal(L) SV_Amygdala(R) 

Amygdala(L) TA_Mid.Temporal(L) TransverseTemporal(L) SA_RostralAnt.Cingulate(R) 

Fig. 5. The top 20 ROIs selected by SGLS-MTL. 

 

 

 

 

 

 

 

Fig. 6. The top 20 ROIs selected by SGLS-MTL-J. 
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on MRI data obtained at the baseline. For the disease progression

considered in this paper, it is reasonable to assume that a small

subset of features and ROI is predictive of the progression, and the

multiple regression models from different time points share a com-

mon subspace structure among data samples. Since there exists

many missing instances in the later time points, the formulation

in Eq. (3) can be extended to the case with missing target values
s: 

min 

U , V , Q T Q= I 
‖ 

Z � (X U − Y ) ‖ 

2 
F + λ1 ‖ U ‖ 2 , 1 + λ2 ‖ U ‖ G 2 , 1 

+ λ3 ‖ U − Q 

T V ‖ 

2 
F (39)

We use a matrix Z ∈ R n × m to indicate missing target values,

here Z i, j = 0 if the target value of sample i is missing at the j th

ime point, and Z i, j = 1 otherwise. We use the componentwise op-

rator � as follows: Z = A � B denotes z i, j = a i, j b i, j , for all i, j . 



P. Cao et al. / Pattern Recognition 72 (2017) 219–235 231 

Fig. 7. Scatter plots of ADAS scores versus predicted values on testing data. The 

black dashed line in each figure is a reference of perfect correlation. We perform 

least squares regression on the points shown in the scatter plots and the green solid 

line is the regression line, which serves as a visual indicator of overall performance. 

Fig. 8. Performances of different methods on a longitudinal dataset. 
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We show the scatter plots for the predicted values versus the

ctual values for ADAS-Cog and the correlation coefficient ( R ) on

he testing data in Fig. 7 . Since there are few samples available at

he last time point (M48), we only show the scatter plots for the

rst four time points. Moreover, the experimental result of RSME

s shown in Fig. 8 . In the scatter plots, we see that the predicted

alues and actual clinical scores have a high correlation. Again, the

roposed method achieved the best results, consistently perform-

ng better than the other methods. 

.5. Experiment V: subspace based clustering 

The clustering result is evaluated by comparing the obtained la-

el of each data point using clustering algorithms with that pro-
ided by the data set. The dataset is categorized into 4 classes:

D, NC, pMCI and sMCI, thus the number of clusters m is set to 4. 

Depending on the space where the clustering is performed,

e investigate the three different clustering methods: input space

lustering methods (K-means and SGL-C in Eq. (18) ), single sub-

pace based multi-task clustering methods (MTC and SGLS-MTC in

q. (19) , and the multi-subspace based clustering (MSC [66] and

GL-MSC). SGL-C, SGLS-MTC and SGL-MSC integrate the sparse

roup lasso to conduct the feature selection while considering

he group structure during the clustering. Consider the multi-task

lustering methods, where each task corresponds to a time point

 = 1 , . . . , m . For each time point t , we consider a clustering task

ased on data ( X t , y t ), where X t ∈ R 

n ×p denotes the matrix of co-

ariates. 

For each cluster algorithm, 10 tests were conducted on different

andomly chosen clusters, and the average performance as well as

he standard deviation was computed over these 10 tests. The ex-

erimental results of clustering for the baseline data are averaged

ver 10 repetitions and summarized in Table 7 . Two widely used

valuation metrics, accuracy (ACC) and normalized mutual infor-

ation (NMI), are employed to evaluate the quality of clusters. 

From the result in Table 7 , we make the following observations:

1. A first glance at the results shows that the SGLS-MTC algo-

rithm achieved the best performance compared to the com-

peting methods, which indicates that the tasks of clustering

from multiple times are relevant, and exploiting the correla-

tion among the tasks improves the clustering performance of

the baseline data. 

2. We can observe that SGL based clustering is better than the

corresponding unsparse learning method (e.g., SGLS-MTC >

MTC), which implies sparse learning is able to improve the

clustering performance, and feature selection is necessary and

effective for clustering analysis on the AD data with irrelevant

and redundant features. Similar to regression, the feature selec-

tion with sparse group lasso can preserve the data similarity or

manifold structure, so as to improve the performances for the

clustering algorithms regardless of working in the input space

or subspace. Since not all the brain regions are associated with

AD, many of the features are irrelevant and redundant. The re-

sults indicate that the sparse based clustering methods cap-

ture essential characteristics of the high-dimensional MRI data,

and are appropriate for the discovery of underlying concepts

present in data. 

3. When only the baseline data is used for the single task clus-

tering, the multi-subspace based clustering achieved better per-

formances than the clustering algorithms working in the input

space, which demonstrates that the cluster structure is more

clear in the underlying subspace than in the original input

space. 

.6. Experiment VI: multi-modal fusion 

Clinical and research studies commonly acquire complementary

rain images for a more accurate and rigorous assessment of the

isease status and likelihood of progression. MRI, which measures

he structure of the cerebrum, has turned out to be an efficient

ool for detecting the structural changes caused by AD or MCI. Flu-

rodeoxyglucose PET (FDG-PET), a technique for measuring glucose

etabolism, is also a sensitive biomarker for the detection of AD or

CI. Each neuroimaging modality could offer valuable information

or AD or MCI, and studies reported that biomarkers from different

odalities could offer complementary information for different as-

ects of a given disease process [21,78] . 

To estimate the effectiveness of combining multi-modality im-

ge data with our SGLS-MTL method and provide a more compre-
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Table 7 

Clustering results of different clustering algorithms (Note that ∗ and † indicate that SGLS-MTC and SGL-MSC, respectively, significantly 

outperformed that method on that score. with p ≤ 0.05). 

Input space clustering Subspace based multi-task clustering Multi-subspace based clustering 

K-means SGL-C MTC SGLS-MTC MSC SGL-MSC 

ACC 0.4115 ± 0.0779 � † 0.4626 ± 0.0634 � † 0.5149 ± 0.0475 � 0.5567 ± 0.0410 0.4639 ± 0.0524 � † 0.4862 ± 0.0432 � 

NMI 0.3826 ± 0.0582 � † 0.4057 ± 0.0472 � † 0.4688 ± 0.0372 � 0.5152 ± 0.0340 0.4518 ± 0.0433 � † 0.4771 ± 0.0329 � 

Table 8 

Performance comparison with multi-modality data of MTL and SGLS-MTL across all tasks in terms of rMSE (Note that � stands for 

the case with p ≤ 0.05). 

Methods ADAS MMSE RAVLT 

TOTAL T30 RECOG 

MTL MRI 0.7441 ± 0.0356 � 0.7981 ± 0.0405 � 0.7874 ± 0.0515 � 0.8070 ± 0.0389 � 0.8472 ± 0.0369 � 

PET 0.7258 ± 0.0331 � 0.7540 ± 0.0227 � 0.7316 ± 0.0381 � 0.7829 ± 0.0355 � 0.8033 ± 0.0379 � 

MP 0.7055 ± 0.0302 � 0.7414 ± 0.0299 � 0.7134 ± 0.0288 � 0.7535 ± 0.0401 � 0.7828 ± 0.0330 � 

MPD 0.6927 ± 0.0288 � 0.7226 ± 0.0291 � 0.7084 ± 0.0332 � 0.7189 ± 0.0339 � 0.7765 ± 0.0416 � 

SGLS-MTL MP 0.6861 ± 0.0353 � 0.7228 ± 0.0340 � 0.7059 ± 0.0428 � 0.7352 ± 0.0377 � 0.7772 ± 0.0363 � 

MPD 0.6746 ± 0.0318 0.7004 ± 0.0322 0.6975 ± 0.0355 0.7031 ± 0.0329 0.7604 ± 0.0397 

Table 9 

Performance comparison with multi-modality data of MTL and SGLS-MTL in terms of correlation coefficient (CC) across all tasks 

(Note that � stands for the case with p ≤ 0.05). 

Methods ADAS MMSE RAVLT 

TOTAL T30 RECOG 

MTL MRI 0.6592 ± 0.0287 � 0.5933 ± 0.0325 � 0.5316 ± 0.0337 � 0.5173 ± 0.0595 � 0.4428 ± 0.0207 � 

PET 0.6733 ± 0.0308 � 0.6154 ± 0.0420 � 0.5408 ± 0.0456 � 0.5363 ± 0.0533 � 0.4586 ± 0.0360 � 

MP 0.6881 ± 0.0274 � 0.6312 ± 0.0408 � 0.5519 ± 0.0504 � 0.5598 ± 0.0466 � 0.4611 ± 0.0317 � 

MPD 0.6979 ± 0.0192 � 0.6505 ± 0.0442 � 0.5717 ± 0.0388 0.5669 ± 0.0428 � 0.4812 ± 0.0326 � 

SGLS-MTL MP 0.6912 ± 0.0279 � 0.6497 ± 0.0409 � 0.5579 ± 0.0463 � 0.5682 ± 0.0412 � 0.4833 ± 0.0332 

MPD 0.7055 ± 0.0272 0.6616 ± 0.0387 0.5674 ± 0.0410 0.5811 ± 0.0486 0.4886 ± 0.0313 
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w  
hensive comparison of the result from the proposed model, we

further perform some experiments, that are (1) using only MRI

modality, (2) using only PET modality, (3) combining two modali-

ties: PET and MRI (MP), and (4) combining three modalities: PET,

MRI and demographic information including age, years of educa-

tion and ApoE genotyping (MPD). We compare the performance of

the multi-task learning based on � 2, 1 -norm (MTL) and our SGLS-

MTL on the fusing multi-modalities. For the MTL method, the

features from multi-modalities are concatenated into a long vec-

tor features, while for our SGLS-MTL, the features from the same

modality are considered as a group, and the G 2, 1 -norm are used

to fuse the multi-modality data. There have been numerous re-

ports on various ways of combining multi-modality data for effi-

cient classification [21,79] . To our best knowledge, this is the first

work that applies Multi-modal data to regression. Different from

the above experiments, the samples from ADNI-2 are used instead

of ADNI-1, since the number of the patients with PET is sufficient

in ADNI-2. From the ADNI-2, we obtained all the patients with

all MRI, PET and demographic information, totally 756 samples.

The PET imaging data are from the ADNI-2 database processed

by the UC Berkeley team, who use a native-space MRI scan for

each subject that is segmented and parcellated with Freesurfer to

generate a summary cortical and subcortical ROI, and coregister

each florbetapir scan to the corresponding MRI and calculate the

mean florbetapir uptake within the cortical and reference regions.

The procedure of image processing is described in http://adni.loni.

usc.edu/updated-florbetapir-av-45-pet-analysis-results/ . The pre-

diction performance results are shown in Tables 8 and 9 . 

We use the proposed sparse group lasso regularizer to explore

both group-wise and individual importance of each feature for fus-

ing multiple modalities data. We compared our SGLS-MTL with

i  

i  
TL by a straightforward concatenation of the different modality

s baselines. 

The results in these tables are summarized hereafter: 

1. From the results in Tables 8 and 9 , it is clear that the method

with multi-modality outperforms the methods using one single

modality of data. This validates our assumption that the com-

plementary information among different modalities is helpful

for cognitive function prediction. Particularly, when two modal-

ities (MRI and PET) are used, MTL-MP and SGLS-MTL-MP im-

prove the performances compared to MTL-MRI and MTL-PET

using the unimodal information. Moreover when three modali-

ties (MRI, PET and demographic information) are used, the re-

gression performance is further improved. 

2. Regardless of two or three modalities, the proposed multi-task

learning SGLS-MTL achieves better performances than MTL.

The results indicate that the group � 2, 1 -norm regularizer ( G 2, 1 

norm) is able to capture the global relationships between

modalities. This concatenated method provides a straightfor-

ward way for using multi-modality data. However, the simple

concatenation method represents an equal confidence in each

modality, which is often not enough to effectively fuse the het-

erogeneous feature sets. Furthermore, this also justifies the mo-

tivation of learning multiple tasks simultaneously with consid-

ering the group of variables regardless of the ROI structure or

modality structure. 

. Conclusion 

In this paper, we propose a framework for multi-task learning

ith hierarchical group sparsity and shared subspace to facilitate

nformation sharing among different tasks and to better character-

ze Alzheimer’s disease. The assumption of our SGLS-MTL is that

http://adni.loni.usc.edu
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[  
here are common underlying structures shared by the multiple

elated tasks from three aspects: shared features, shared ROIs and

hared subspace. Extensive experiments on ADNI data sets illus-

rate that proposed SGLS-MTL method not only yields superior per-

ormance on prediction performance of cognitive score prediction,

ut also is a powerful tool for discovering a small set of imag-

ng biomarkers. Our current work is based on the summary statis-

ics of ROI as input features. In the feature, we will extend our

ethod on the higher dimensional voxel-based data [27] . More-

ver, in future work, we are interested in investigating other un-

erlying structure in features, such as graph structure, which can

elp gain additional insights to understand and interpret data. 
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